1 Introducción

library(ISLR)
datos = Hitters
str(datos)
## 'data.frame':    322 obs. of  20 variables:
##  $ AtBat    : int  293 315 479 496 321 594 185 298 323 401 ...
##  $ Hits     : int  66 81 130 141 87 169 37 73 81 92 ...
##  $ HmRun    : int  1 7 18 20 10 4 1 0 6 17 ...
##  $ Runs     : int  30 24 66 65 39 74 23 24 26 49 ...
##  $ RBI      : int  29 38 72 78 42 51 8 24 32 66 ...
##  $ Walks    : int  14 39 76 37 30 35 21 7 8 65 ...
##  $ Years    : int  1 14 3 11 2 11 2 3 2 13 ...
##  $ CAtBat   : int  293 3449 1624 5628 396 4408 214 509 341 5206 ...
##  $ CHits    : int  66 835 457 1575 101 1133 42 108 86 1332 ...
##  $ CHmRun   : int  1 69 63 225 12 19 1 0 6 253 ...
##  $ CRuns    : int  30 321 224 828 48 501 30 41 32 784 ...
##  $ CRBI     : int  29 414 266 838 46 336 9 37 34 890 ...
##  $ CWalks   : int  14 375 263 354 33 194 24 12 8 866 ...
##  $ League   : Factor w/ 2 levels "A","N": 1 2 1 2 2 1 2 1 2 1 ...
##  $ Division : Factor w/ 2 levels "E","W": 1 2 2 1 1 2 1 2 2 1 ...
##  $ PutOuts  : int  446 632 880 200 805 282 76 121 143 0 ...
##  $ Assists  : int  33 43 82 11 40 421 127 283 290 0 ...
##  $ Errors   : int  20 10 14 3 4 25 7 9 19 0 ...
##  $ Salary   : num  NA 475 480 500 91.5 750 70 100 75 1100 ...
##  $ NewLeague: Factor w/ 2 levels "A","N": 1 2 1 2 2 1 1 1 2 1 ...

Comprobamos si hay missing obsevations (NA) en el salario:

sum(is.na(datos$Salary))
## [1] 59

Eliminamos estos datos:

datos = na.omit(datos)

2 Variables no significativas

m1 = lm(Salary ~ ., data = datos)
summary(m1)
## 
## Call:
## lm(formula = Salary ~ ., data = datos)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -907.62 -178.35  -31.11  139.09 1877.04 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  163.10359   90.77854   1.797 0.073622 .  
## AtBat         -1.97987    0.63398  -3.123 0.002008 ** 
## Hits           7.50077    2.37753   3.155 0.001808 ** 
## HmRun          4.33088    6.20145   0.698 0.485616    
## Runs          -2.37621    2.98076  -0.797 0.426122    
## RBI           -1.04496    2.60088  -0.402 0.688204    
## Walks          6.23129    1.82850   3.408 0.000766 ***
## Years         -3.48905   12.41219  -0.281 0.778874    
## CAtBat        -0.17134    0.13524  -1.267 0.206380    
## CHits          0.13399    0.67455   0.199 0.842713    
## CHmRun        -0.17286    1.61724  -0.107 0.914967    
## CRuns          1.45430    0.75046   1.938 0.053795 .  
## CRBI           0.80771    0.69262   1.166 0.244691    
## CWalks        -0.81157    0.32808  -2.474 0.014057 *  
## LeagueN       62.59942   79.26140   0.790 0.430424    
## DivisionW   -116.84925   40.36695  -2.895 0.004141 ** 
## PutOuts        0.28189    0.07744   3.640 0.000333 ***
## Assists        0.37107    0.22120   1.678 0.094723 .  
## Errors        -3.36076    4.39163  -0.765 0.444857    
## NewLeagueN   -24.76233   79.00263  -0.313 0.754218    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 315.6 on 243 degrees of freedom
## Multiple R-squared:  0.5461, Adjusted R-squared:  0.5106 
## F-statistic: 15.39 on 19 and 243 DF,  p-value: < 2.2e-16

Este análisis nos qué variables son significativas en el análisis de Salary en función del resto de variables. Pero quedarnos con el modelo que contiene las variables significativas no nos garantiza que sea el mejor modelo para predecir.

3 Best subset selection

Algoritmo:

Para k = 1, 2, …, p:

  • Estimar todos los modelos de k regresores (hay \(\binom{p}{k}\) modelos posibles).
  • Elegir el que tenga menor RSS o mayor R\(^2\). Este será el modelo M\(_{k}\).
library(leaps)
m2 = regsubsets(Salary ~ ., data = datos)
summary(m2)
## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = datos)
## 19 Variables  (and intercept)
##            Forced in Forced out
## AtBat          FALSE      FALSE
## Hits           FALSE      FALSE
## HmRun          FALSE      FALSE
## Runs           FALSE      FALSE
## RBI            FALSE      FALSE
## Walks          FALSE      FALSE
## Years          FALSE      FALSE
## CAtBat         FALSE      FALSE
## CHits          FALSE      FALSE
## CHmRun         FALSE      FALSE
## CRuns          FALSE      FALSE
## CRBI           FALSE      FALSE
## CWalks         FALSE      FALSE
## LeagueN        FALSE      FALSE
## DivisionW      FALSE      FALSE
## PutOuts        FALSE      FALSE
## Assists        FALSE      FALSE
## Errors         FALSE      FALSE
## NewLeagueN     FALSE      FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
##          AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## 1  ( 1 ) " "   " "  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 2  ( 1 ) " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 3  ( 1 ) " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 4  ( 1 ) " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 5  ( 1 ) "*"   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 6  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    " "  
## 7  ( 1 ) " "   "*"  " "   " "  " " "*"   " "   "*"    "*"   "*"    " "  
## 8  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   " "    " "   "*"    "*"  
##          CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1  ( 1 ) "*"  " "    " "     " "       " "     " "     " "    " "       
## 2  ( 1 ) "*"  " "    " "     " "       " "     " "     " "    " "       
## 3  ( 1 ) "*"  " "    " "     " "       "*"     " "     " "    " "       
## 4  ( 1 ) "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 5  ( 1 ) "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 6  ( 1 ) "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 7  ( 1 ) " "  " "    " "     "*"       "*"     " "     " "    " "       
## 8  ( 1 ) " "  "*"    " "     "*"       "*"     " "     " "    " "

El resultado son los mejores 8 modelos (por defecto):

  • la primera línea es el mejor modelo (en términos de R\(^2\)) de una variable. La variable seleccionada es la que aparece con un asterisco, CRBI.
  • la segunda linea es el mejor modelo (en términos de R\(^2\)) de dos variables, Hits y CRBI.
  • y así sucesivamente.

Podemos seleccionar el numero de modelos que nos devuelve con nvmax:

m_best = regsubsets(Salary ~ ., data = datos, nvmax = 19)
summary(m_best)
## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = datos, nvmax = 19)
## 19 Variables  (and intercept)
##            Forced in Forced out
## AtBat          FALSE      FALSE
## Hits           FALSE      FALSE
## HmRun          FALSE      FALSE
## Runs           FALSE      FALSE
## RBI            FALSE      FALSE
## Walks          FALSE      FALSE
## Years          FALSE      FALSE
## CAtBat         FALSE      FALSE
## CHits          FALSE      FALSE
## CHmRun         FALSE      FALSE
## CRuns          FALSE      FALSE
## CRBI           FALSE      FALSE
## CWalks         FALSE      FALSE
## LeagueN        FALSE      FALSE
## DivisionW      FALSE      FALSE
## PutOuts        FALSE      FALSE
## Assists        FALSE      FALSE
## Errors         FALSE      FALSE
## NewLeagueN     FALSE      FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: exhaustive
##           AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## 1  ( 1 )  " "   " "  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 2  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 3  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 4  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 5  ( 1 )  "*"   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 6  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    " "  
## 7  ( 1 )  " "   "*"  " "   " "  " " "*"   " "   "*"    "*"   "*"    " "  
## 8  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   "*"    "*"  
## 9  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 10  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 11  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 12  ( 1 ) "*"   "*"  " "   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 13  ( 1 ) "*"   "*"  " "   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 14  ( 1 ) "*"   "*"  "*"   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 15  ( 1 ) "*"   "*"  "*"   "*"  " " "*"   " "   "*"    "*"   " "    "*"  
## 16  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   " "   "*"    "*"   " "    "*"  
## 17  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   " "   "*"    "*"   " "    "*"  
## 18  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   "*"   "*"    "*"   " "    "*"  
## 19  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   "*"   "*"    "*"   "*"    "*"  
##           CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1  ( 1 )  "*"  " "    " "     " "       " "     " "     " "    " "       
## 2  ( 1 )  "*"  " "    " "     " "       " "     " "     " "    " "       
## 3  ( 1 )  "*"  " "    " "     " "       "*"     " "     " "    " "       
## 4  ( 1 )  "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 5  ( 1 )  "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 6  ( 1 )  "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 7  ( 1 )  " "  " "    " "     "*"       "*"     " "     " "    " "       
## 8  ( 1 )  " "  "*"    " "     "*"       "*"     " "     " "    " "       
## 9  ( 1 )  "*"  "*"    " "     "*"       "*"     " "     " "    " "       
## 10  ( 1 ) "*"  "*"    " "     "*"       "*"     "*"     " "    " "       
## 11  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     " "    " "       
## 12  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     " "    " "       
## 13  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 14  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 15  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 16  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 17  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"       
## 18  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"       
## 19  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"

Dentro de cada nivel (es decir, manteniendo fijo el número de variables), se elige la combinación de variables que obtiene el mayor R\(^2\). Pero nosotros queremos el modelo que obtiene el menor test error. Podemos calcular el test error de dos maneras:

  • Diréctamente, utilizando subconjuntos de validation o cross-validation.
  • Indirectamente, mediante las métricas Cp, AIC, BIC or R\(^2\) ajustado.

\[ Cp = \frac{1}{n}(RSS + 2d\hat{\sigma}^2) \]

\[ AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2) \]

Cp y AIC son proporcionales, \(C_p = AIC * \hat{\sigma}^2\).

\[ BIC = \frac{1}{n}(RSS + \log(n)d\hat{\sigma}^2) \]

\[ R^2-ajustado = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)} \]

donde:

  • d: número de regresores.
  • \(\hat{\sigma}^2\): estimación del error del modelo. En regresión simple es \(RSS/(n-2)\).
  • RSS: Residual sum of squares

\[ RSS = \sum _{i=1}^n(y_i - \hat{y}_i)^2 \]

  • TSS: Total Sum of Squares

\[ TSS = \sum _{i=1}^n(y_i - \bar{y}_i)^2 \]

En R, estas métricas están se pueden obtener de la siguiente manera:

m_best_summary = summary(m_best)
names(m_best_summary)
## [1] "which"  "rsq"    "rss"    "adjr2"  "cp"     "bic"    "outmat" "obj"
plot(m_best_summary$adjr2, xlab = "Numero de variables", ylab = "R2 ajustado", type = "b")

Buscamos el máximo:

which.max(m_best_summary$adjr2)
## [1] 11

Si utilizamos el criterio del Cp (que es equivalente al AIC):

plot(m_best_summary$cp, xlab = "Numero de variables", ylab = "R2 ajustado", type = "b")

which.min(m_best_summary$cp)
## [1] 10

Justificación: el RSS disminuye con el número de regresores d. Por eso penalizamos incluyendo un término que contiene a d.

Los coeficinetes estimados con ese modelo son:

coef(m_best,10)
##  (Intercept)        AtBat         Hits        Walks       CAtBat 
##  162.5354420   -2.1686501    6.9180175    5.7732246   -0.1300798 
##        CRuns         CRBI       CWalks    DivisionW      PutOuts 
##    1.4082490    0.7743122   -0.8308264 -112.3800575    0.2973726 
##      Assists 
##    0.2831680

4 Método Forward-Stepwise

Algoritmo:

  1. M0 es el modelo sin regresores.
  2. Para k = 0, …, (p-1)
    1. A partir del modelo con k regresores, M\(_k\), estimar todos los modelos posibles con (k+1) regresores.
    2. Elegir el que tenga menor RSS o mayor R\(^2\). Este será el modelo M\(_{k+1}\).
  3. Elegir el mejor modelo de M0, …, M\(_{p}\) utilizando validación cruzada, Cp, AIC, BIC, R2-ajustado.
m_fwd = regsubsets(Salary ~ ., data = datos, nvmax = 19, method = "forward")
summary(m_fwd)
## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = datos, nvmax = 19, method = "forward")
## 19 Variables  (and intercept)
##            Forced in Forced out
## AtBat          FALSE      FALSE
## Hits           FALSE      FALSE
## HmRun          FALSE      FALSE
## Runs           FALSE      FALSE
## RBI            FALSE      FALSE
## Walks          FALSE      FALSE
## Years          FALSE      FALSE
## CAtBat         FALSE      FALSE
## CHits          FALSE      FALSE
## CHmRun         FALSE      FALSE
## CRuns          FALSE      FALSE
## CRBI           FALSE      FALSE
## CWalks         FALSE      FALSE
## LeagueN        FALSE      FALSE
## DivisionW      FALSE      FALSE
## PutOuts        FALSE      FALSE
## Assists        FALSE      FALSE
## Errors         FALSE      FALSE
## NewLeagueN     FALSE      FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: forward
##           AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## 1  ( 1 )  " "   " "  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 2  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 3  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 4  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 5  ( 1 )  "*"   "*"  " "   " "  " " " "   " "   " "    " "   " "    " "  
## 6  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    " "  
## 7  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    " "  
## 8  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    "*"  
## 9  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 10  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 11  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 12  ( 1 ) "*"   "*"  " "   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 13  ( 1 ) "*"   "*"  " "   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 14  ( 1 ) "*"   "*"  "*"   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 15  ( 1 ) "*"   "*"  "*"   "*"  " " "*"   " "   "*"    "*"   " "    "*"  
## 16  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   " "   "*"    "*"   " "    "*"  
## 17  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   " "   "*"    "*"   " "    "*"  
## 18  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   "*"   "*"    "*"   " "    "*"  
## 19  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   "*"   "*"    "*"   "*"    "*"  
##           CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1  ( 1 )  "*"  " "    " "     " "       " "     " "     " "    " "       
## 2  ( 1 )  "*"  " "    " "     " "       " "     " "     " "    " "       
## 3  ( 1 )  "*"  " "    " "     " "       "*"     " "     " "    " "       
## 4  ( 1 )  "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 5  ( 1 )  "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 6  ( 1 )  "*"  " "    " "     "*"       "*"     " "     " "    " "       
## 7  ( 1 )  "*"  "*"    " "     "*"       "*"     " "     " "    " "       
## 8  ( 1 )  "*"  "*"    " "     "*"       "*"     " "     " "    " "       
## 9  ( 1 )  "*"  "*"    " "     "*"       "*"     " "     " "    " "       
## 10  ( 1 ) "*"  "*"    " "     "*"       "*"     "*"     " "    " "       
## 11  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     " "    " "       
## 12  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     " "    " "       
## 13  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 14  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 15  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 16  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 17  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"       
## 18  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"       
## 19  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"
m_fwd_summary = summary(m_fwd)
which.min(m_fwd_summary$cp)
## [1] 10
coef(m_fwd,10)
##  (Intercept)        AtBat         Hits        Walks       CAtBat 
##  162.5354420   -2.1686501    6.9180175    5.7732246   -0.1300798 
##        CRuns         CRBI       CWalks    DivisionW      PutOuts 
##    1.4082490    0.7743122   -0.8308264 -112.3800575    0.2973726 
##      Assists 
##    0.2831680

5 Método Backward-Stepwise

Algoritmo:

  1. Mp es el modelo con todos los regresores.
  2. Para k = p, …, 1
    1. A partir del modelo con k regresores, M\(_k\), estimar todos los modelos posibles con (k-1) regresores.
    2. Elegir el que tenga menor RSS o mayor R\(^2\). Este será el modelo M\(_{k-1}\).
  3. Elegir el mejor modelo de M0, …, M\(_{p}\) utilizando validación cruzada, Cp, AIC, BIC, R2 ajustado.
m_bwd = regsubsets(Salary ~ ., data = datos, nvmax = 19, method = "backward")
summary(m_bwd)
## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = datos, nvmax = 19, method = "backward")
## 19 Variables  (and intercept)
##            Forced in Forced out
## AtBat          FALSE      FALSE
## Hits           FALSE      FALSE
## HmRun          FALSE      FALSE
## Runs           FALSE      FALSE
## RBI            FALSE      FALSE
## Walks          FALSE      FALSE
## Years          FALSE      FALSE
## CAtBat         FALSE      FALSE
## CHits          FALSE      FALSE
## CHmRun         FALSE      FALSE
## CRuns          FALSE      FALSE
## CRBI           FALSE      FALSE
## CWalks         FALSE      FALSE
## LeagueN        FALSE      FALSE
## DivisionW      FALSE      FALSE
## PutOuts        FALSE      FALSE
## Assists        FALSE      FALSE
## Errors         FALSE      FALSE
## NewLeagueN     FALSE      FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: backward
##           AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## 1  ( 1 )  " "   " "  " "   " "  " " " "   " "   " "    " "   " "    "*"  
## 2  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    "*"  
## 3  ( 1 )  " "   "*"  " "   " "  " " " "   " "   " "    " "   " "    "*"  
## 4  ( 1 )  "*"   "*"  " "   " "  " " " "   " "   " "    " "   " "    "*"  
## 5  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    "*"  
## 6  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    "*"  
## 7  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    "*"  
## 8  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   " "    " "   " "    "*"  
## 9  ( 1 )  "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 10  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 11  ( 1 ) "*"   "*"  " "   " "  " " "*"   " "   "*"    " "   " "    "*"  
## 12  ( 1 ) "*"   "*"  " "   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 13  ( 1 ) "*"   "*"  " "   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 14  ( 1 ) "*"   "*"  "*"   "*"  " " "*"   " "   "*"    " "   " "    "*"  
## 15  ( 1 ) "*"   "*"  "*"   "*"  " " "*"   " "   "*"    "*"   " "    "*"  
## 16  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   " "   "*"    "*"   " "    "*"  
## 17  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   " "   "*"    "*"   " "    "*"  
## 18  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   "*"   "*"    "*"   " "    "*"  
## 19  ( 1 ) "*"   "*"  "*"   "*"  "*" "*"   "*"   "*"    "*"   "*"    "*"  
##           CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1  ( 1 )  " "  " "    " "     " "       " "     " "     " "    " "       
## 2  ( 1 )  " "  " "    " "     " "       " "     " "     " "    " "       
## 3  ( 1 )  " "  " "    " "     " "       "*"     " "     " "    " "       
## 4  ( 1 )  " "  " "    " "     " "       "*"     " "     " "    " "       
## 5  ( 1 )  " "  " "    " "     " "       "*"     " "     " "    " "       
## 6  ( 1 )  " "  " "    " "     "*"       "*"     " "     " "    " "       
## 7  ( 1 )  " "  "*"    " "     "*"       "*"     " "     " "    " "       
## 8  ( 1 )  "*"  "*"    " "     "*"       "*"     " "     " "    " "       
## 9  ( 1 )  "*"  "*"    " "     "*"       "*"     " "     " "    " "       
## 10  ( 1 ) "*"  "*"    " "     "*"       "*"     "*"     " "    " "       
## 11  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     " "    " "       
## 12  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     " "    " "       
## 13  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 14  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 15  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 16  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    " "       
## 17  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"       
## 18  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"       
## 19  ( 1 ) "*"  "*"    "*"     "*"       "*"     "*"     "*"    "*"
m_bwd_summary = summary(m_bwd)
which.min(m_bwd_summary$cp)
## [1] 10
coef(m_bwd,10)
##  (Intercept)        AtBat         Hits        Walks       CAtBat 
##  162.5354420   -2.1686501    6.9180175    5.7732246   -0.1300798 
##        CRuns         CRBI       CWalks    DivisionW      PutOuts 
##    1.4082490    0.7743122   -0.8308264 -112.3800575    0.2973726 
##      Assists 
##    0.2831680

Es el mismo que antes.

6 Eligiendo el mejor modelo utilizando subconjuntos de validación

set.seed(1)
n = nrow(datos)
n_train = round(n/2)
n_test = n - n_train

v = 1:n
pos_train = sample(v,n_train,replace = F) # muestreo sin reemplazamiento
pos_test = v[-pos_train]

# dividimos los datos en training set y validation set
datos_train = datos[pos_train,]
datos_test = datos[pos_test,]

Estimamos todos los modelos posibles con los datos de entrenamiento

m_val = regsubsets(Salary ~ ., data = datos_train, nvmax = 19)

Vamos a predecir con los datos de test. Como no existe la funcion predecir para este tipo de modelos, la construimos nosotros:

X_test = model.matrix(Salary ~ ., data = datos_test)
source("MSE.R")
#
mse_val = rep(0,19)
for (i in 1:19){
  coef_i = coef(m_val,i)
  pred_i = X_test[,names(coef_i)] %*% coef_i
  mse_val[i] = MSE(datos_test$Salary,pred_i)
}
which.min(mse_val)
## [1] 8

Para calcular los coeficientes del modelo de regresión finales, es preferible hacerlo con todos los datos:

m_val_final = regsubsets(Salary ~ ., data = datos, nvmax = 19)
coef(m_val_final,8)
##  (Intercept)        AtBat         Hits        Walks       CHmRun 
##  130.9691577   -2.1731903    7.3582935    6.0037597    1.2339718 
##        CRuns       CWalks    DivisionW      PutOuts 
##    0.9651349   -0.8323788 -117.9657795    0.2908431

La función que predice a partir de modelos estimados con regsubsets() la vamos a utilizar más veces. Por eso definimos una función para predecir:

source("regsubsets_predict.R")
predict.regsubsets
## function (objeto_regsubsets, newdata, id) 
## {
##     formu = as.formula(objeto_regsubsets$call[[2]])
##     X_mat = model.matrix(formu, newdata)
##     coefi = coef(objeto_regsubsets, id)
##     X_col = names(coefi)
##     pred = X_mat[, X_col] %*% coefi
##     return(pred)
## }

Comprobamos que funciona bien:

head(predict.regsubsets(m_val_final,datos,8))
##                        [,1]
## -Alan Ashby        425.2400
## -Alvin Davis       715.8659
## -Andre Dawson     1153.0071
## -Andres Galarraga  521.4537
## -Alfredo Griffin   603.3258
## -Al Newman         159.5798

Tambien funciona con predict()

head(predict(m_val_final,datos,8))
##                        [,1]
## -Alan Ashby        425.2400
## -Alvin Davis       715.8659
## -Andre Dawson     1153.0071
## -Andres Galarraga  521.4537
## -Alfredo Griffin   603.3258
## -Al Newman         159.5798

7 Eligiendo el mejor modelo utilizando Cross-Validation

Función para obtener las posiciones de train y de test:

source("cross_val_pos.R")

Datos de los folds:

num_folds = 10
set.seed(1)
pos = cross_val_pos(nrow(datos),num_folds)

Calculamos el error cometido en cada fold por cada modelo:

mse_cv = matrix(0, nrow = num_folds, ncol = 19)
for (i in 1:num_folds){
  # datos de training y de validation de cada fold
  datos_train = datos[pos$train[[i]],]
  datos_test = datos[pos$test[[i]],]
  
  m_cv = regsubsets(Salary ~ .,data = datos_train, nvmax = 19)
  
  for (j in 1:19){
    pred = predict(m_cv,newdata = datos_test, id = j)
    mse_cv[i,j] = MSE(datos_test$Salary,pred)
  }
}
mse_cv_med = apply(mse_cv, 2, mean)
plot(mse_cv_med, type = "b")

El que tiene menor error es el de 11 variables. Lo aplicamos a todos los datos:

m_cv_final = regsubsets(Salary ~ ., data = datos, nvmax = 19)
coef(m_cv_final,11)
##  (Intercept)        AtBat         Hits        Walks       CAtBat 
##  135.7512195   -2.1277482    6.9236994    5.6202755   -0.1389914 
##        CRuns         CRBI       CWalks      LeagueN    DivisionW 
##    1.4553310    0.7852528   -0.8228559   43.1116152 -111.1460252 
##      PutOuts      Assists 
##    0.2894087    0.2688277